
1.1 Introduction
The forensic determination of ‘ancestry’ and estimation of 
sex of unprovenienced human remains (i.e. remains for 
which the archaeological origin is unknown) relies on the 
careful measurement of ‘landmarks’ on the elements at 
hand (ideally crania and/or pelves) that have been found 
to be diagnostic when suitably calibrated, standardized 
for population, and analyzed. There are software packages 
available (e.g. FORDISC 3.1, CRANID) that can be used by 
researchers, who merely have to measure and input the 
values, and the program (with its reference data) will 
perform the calculations and provide the result within a 
 certain probability range. In recent years, researchers have 
begun to apply machine learning techniques to this data, 
with very good results (e.g. Navega et al. 2015a, 2015b; 
Ousley 2016; Maier et al. 2015) suggesting the potential 
to improve the accuracy of identifying unprovenienced 
remains at the population and individual levels (e.g. 
 Nagpal et al. 2017).

But what if one does not actually have the bones physi-
cally present to measure? Can machine vision extract 
anything useful about potential ancestry? This is a criti-
cal question to investigate because traders buy and sell 
human remains online; there is a very active market for 
human bone, and to date it is nearly impossible to say 
anything about which people(s) are being bought and 
sold (see section 1.2). Any given skeletal element might 

appear in a handful of images; once purchased, it disap-
pears again into someone’s collection. How many peo-
ple’s remains are being bought and sold? From what areas 
of the world (or populations) have their remains been 
sourced? We believe we can now begin to answer such 
previously imponderable questions.

In this paper we explore the potential for machine vision 
on simple photographs of human skulls as an initial exper-
iment that uses a particular kind of machine vision (neural 
network) architecture to develop a suite of ‘distances’ from 
known reference images, and then perform a mixture dis-
criminant analysis (mda) comparing a dataset with known, 
grounded provenience against a dataset sourced from 
social media posts. We outline a method that may be able 
to in the broadest strokes say something of the ‘ancestry’ 
of a skull, based on a computer-vision approach to meas-
uring visual dissimilarity using a convolutional neural net-
work, a triplet loss function, and comparison to a group of 
reference images. The visual dissimilarities that the neural 
network picks up on seem to be the same diagnostic areas 
that are used to osteometrically estimate ancestry, such as 
orbital shape and dimensions, nasal width and breadth, 
average degree of alveolar and maxillary prognathism, 
cranial vault shape, etc. The mda results seem to indicate 
that at the present moment, the method is sufficient to 
confirm or deny the story about a skull told by the ven-
dor. With refinement and better-grounded provenience 
data we believe that this machine vision approach holds 
enormous potential for developing useful insights from 
photographic evidence. The neural network, our resulting 
measurements, and our analytical R code are available in 
our project repository at (Graham et al. 2020).
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We use the term ‘ancestry’ or ‘origin’ in their forensic 
anthropological senses; we are not thereby implying that 
these categories are how these individuals experienced 
‘race’. Dunn et al. 2020 provide an overview of the para-
dox of ‘estimating a culturally constructed, peer-perceived 
category (social race) from biological tissues. These esti-
mations are only possible because of the nonzero cor-
relation between social race, skeletal morphology, and 
geographic origin which has been maintained (at least in 
the United States) through assortative mating and institu-
tional racism’ (Dunn et al. 2020: 2). Our research, and its 
use of social media artefacts, was declared ‘research ethics 
exempt’ as per the Canadian Tri-council Policy Statement 
on the Ethical Conduct for Research Involving Humans, by 
the Carleton University Ethics Research Board.

1.2 The Trade in Human Remains on Social Media 
and E-Commerce Platforms

‘This little beauty of a skull was brought back from 
Vietnam by an American soldier. Uncut and in 
amazing condition. Message me for more informa-
tion and if you want to buy it. […] Worldwide ship-
ping available […]’ [link withheld; see Figure 1].

How can we know if this purported origin is true? This 
is the only data on this skull – this person’s – existence. 
After purchase, it will disappear into someone’s collection.

We have been documenting the existence of trafficking 
in a diverse range of human remains on frequently used 
social media platforms, such as Instagram, Facebook and 
various e-commerce platforms (Huffer & Graham 2017, 
2018). As part of the sales process for human remains (or 
any other trafficked item), claims are often made about 
provenience (archaeological origin) and provenance (own-
ership history) that cannot be verified without having the 
item in front of experts after being seized by law or border 
agents (leaving aside rare examples where seizures lead to 
identifications, e.g. ICE 2011; Weisberger 2019; Yates 2019).

The trade in human remains conducted over Instagram is 
extensive. It cross-feeds into other platforms and out onto 
the ‘regular’ web via professional online storefronts. Posts 
like the one above capture many of its typical features–a 
brief ‘backstory’ that turns the skull into something more 
than ‘mere’ bone, notes on its condition, and directions on 

how to initiate the purchase. A sequence of hashtags makes 
sure that the post will be found in various overlapping 
circles of interest. In this particular post, if the backstory 
is true, then we also have evidence of at least one crime 
since the law of war in the United States does not envi-
sion human remains as war trophies (the directives on ‘war 
trophies’ in operation in 1969, Army Regulation 608–4 
Departments of the Army 1969 at least required that a sol-
dier obtain permission to take a war trophy or souvenir, 
in writing. Thus, a legitimate war trophy would also have 
associated paperwork. While the directive of 1969 does not 
specifically exclude human remains, it does describe a wide 
variety of prohibited items in Section II.5, including objects 
‘of a household nature, objects of art or historical value… of 
scientific value’ which presumably would cover this situa-
tion). Buying and selling of human remains is not prohib-
ited in all jurisdictions, and exists in a legal grey area.

Since 2015 we have screen-captured numerous exam-
ples of commentary on images of human remains for sale 
in which buyers/sellers also ask for help estimating the 
age, sex, or probable ancestry of the human remains they 
recently obtained, or else offer competing interpretations. 
These requests for help demonstrate that at least a pro-
portion of those engaged in this trade are not well-versed 
in the osteological methods and techniques necessary to 
have at least a general concept of who they are collecting, 
and therefore cannot verify the claims of sellers before 
buying. In any event, testimony from collectors them-
selves in media outlets such as Wired UK demonstrate 
that an important concern is that the item should be real 
bone; provenance, provenience and accurate demographic 
information are usually less important (Schwartz 2019).

There seem to be two main story-tropes that are told by 
collectors and dealers in relation to the ‘ancestries’ of the 
remains they acquire (Pokines 2015a; Pokines et al. 2017; 
Hefner et al. 2016; see also Huffer and Graham 2017). The 
first is that many remains, especially whole skeletons or 
crania, were stolen or sourced from British-controlled 
and post-Independence India to supply medical students 
during the 1800s to as recently as the 1980s. The second, 
told by niche collectors interested in ‘tribal art’ tends to 
argue that their authentic ‘ethnographic’ specimens were 
somehow meant to be collected by the Western explor-
ers, missionaries or ‘natural historians’ who first acquired 
them. These ‘ethnographic’ materials tend to be crania or 
infracranial elements modified by Indigenous people for 
ritual use in the past or present, or as part of early ‘curio’ 
markets ca. 1800–1950. Twenty-first century osteoarchae-
ology can more readily acknowledge that many such col-
lections now held by museums, but especially by private 
individuals, first came into global circulation for the pur-
poses of ‘scientific racism’ during the emergence of physi-
cal anthropology as a discipline (Redman 2016). These two 
possible origin stories for specific categories of human 
remains circulating on today’s market do not include the 
myriad examples of remains being actively looted from 
known or unknown prehistoric and historic archaeologi-
cal sites, more recent open-air cemeteries, recovered from 
clandestine burials or found by chance (Pokines 2015b; 
Huxley & Finnegan 2004; Halling & Seidemann 2016; 
Seidemann, Stojanowski & Rich 2009).

Figure 1: A post on Instagram advertising a human skull 
for sale. Thousands of similar posts and their associated 
metadata can easily be found following the hashtags or 
usernames of individuals who comment or like a post.
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Neither of these stories ethically absolve participants in 
this trade, but the former is often presented as ‘ok’ while 
the latter, since it involves the stealing of remains of First 
Nations and other Indigenous groups, is seen by traders 
as less morally sound, due to the existence of explicit 
legislation – see for instance the interviews with traders 
in (Schwartz 2019) and (Troian 2019a,b). It is also worth 
noting that the pre-1985 trade in skeletal remains by and 
for medical students in India and Bangladesh never dis-
appeared, and we have observed that it continues largely 
within public and closed Facebook groups.

In other research we showed that there were ethical 
and technological problems with using neural networks 
to classify these images of human remains, or in using 
transfer-learning techniques which require thousands 
of images of a particular classification in order to work 
(Huffer & Graham 2018; Huffer, Wood & Graham 2019). It 
is unfeasible and impractical to try to create such training 
data in the domain of human remains. For instance, in the 
case of the latter technique, it would be easy to mis-classify 
a particular cultural grouping, and in any event, culture 
and ethnicity does not map to osteology. What is worse, 
such a tool could be used by unethical actors to give the 
authority of algorithms to a selling point: ‘the computer 
identifies this skull as 100% Tibetan!’ In those papers, we 
were classifying the whole image, including backgrounds, 
with the ambition of identifying visual tropes in the com-
position of the image. In this paper, we mask the back-
grounds out and focus on understanding the patterns 
of difference in the images of the skulls. While it is easy 
to slip into a habit of thinking of the approach, and the 
results, as saying something about the skulls themselves, 
we must always remember that the approach is exploring 
the web of differences of the images.

1.3 Current approaches to ancestry estimation 
of human remains
Traditional forensic anthropological approaches to esti-
mating ancestry, especially of remains recovered from 
crime scenes, clandestine graves, or sites of mass disaster, 
as well as unprovenanced remains recovered from the 
market, seek to quantify and qualify the complex inter-
relationship between skeletal morphology, genetics, geo-
graphic origin, and socio-cultural constructs (Pilloud & 
Hefner 2016; Dunn et al. 2020). While various research-
ers have and continue to attempt to develop regression 
equations to estimate ancestry from various infracranial 
elements (e.g. Liebenberg et al. 2015; Meeusen et al. 
2015; Wescott 2005; Tallman & Winburn 2015; Ünlütürk 
2017; Swenson 2013), it is the collection of a battery of 
metric measurements and non-metric/macromorpho-
scopic traits from ideally intact crania that are consid-
ered the most reliable. Ideally ancestry estimation would 
occur as part of a suite of interdisciplinary research per-
formed in collaboration with anthropologists and/or law 
enforcement to fully establish the biological profile and 
(as much as possible) the life history of the individual 
whose cranium was recovered from the market (e.g. Wat-
kins et al. 2017; Dodrill et al. 2016). Given the ephem-
eral nature of what appears and disappears online, the 
preferred situation of being able to assess the remains in 

person in  controlled laboratory conditions is very rarely 
realized.

Machine learning and neural networks have been 
employed by forensic anthropologists and archaeologists 
since at least 2001 (see for instance Bell & Jantz, 2002) 
for purposes of estimating ancestry, but the confound-
ing factor here is that the algorithms are often trained 
solely on the metric data obtained from careful meas-
uring a test population of crania of known age, sex and 
ancestry (Ousley, 2016). For the reasons discussed above 
and the nature of the specific category of unprovenienced 
remains we are concerned with in this pilot-level experi-
ment, being able to employ machine learning by these 
‘traditional’ methods is also not possible. We simply can-
not obtain the data that forensic identification uses.

Our method is by default not as good as actually being 
able to analyze remains in person, but given the nature of 
the evidence of the human remains in question here, it 
might be as good as it gets.

1.4 Neural Networks and One-Shot Learning
A neural network for image classification consists of a 
sequence of layers of ‘neurons’ or computational func-
tions that accept an input (text, pixel values, etc.) and 
performs a transformation which then gets passed onto 
the next layer. The initial weights connecting the neurons 
are randomized; the network can be trained on a known 
dataset by backpropagating increasing or decreasing 
weights until errors are minimized and the network cor-
rectly learns its training dataset. By comparing the pattern 
that lights up when exposed to a particular image, against 
the aggregate patterns for known classified images, a net-
work can output the probability that a new image is a 
member of a particular class of images. The problem with 
this approach is that it requires extremely large training 
datasets. It also requires that the training dataset have 
example images of what one is trying to classify. Knowing 
whether or not something is a member of a class requires 
multiple examples so that the model can learn the extent 
of the variability.

So-called ‘one-shot’ learning on the other hand is predi-
cated instead on the idea that we have only a few exam-
ples of the domain we are interested in – even only one. 
Then, the trained model is presented with two images 
that the model has not encountered before – a person of 
interest – and a second photograph which may or may 
not contain that person, for instance. The model is able to 
determine whether that second photograph contains the 
person depicted in the first image. This approach uses two 
neural networks that have the same pattern of weights 
and activations. The two images are presented to the two 
networks, which convert each image to a vectorized rep-
resentation (Figure 2). The networks are joined together 
(which is why this architecture is sometimes known as ‘sia-
mese networks’) by a final loss function that determines 
the dissimilarity between the two vectors (‘siamese net-
works’ were first introduced in 1993 for the purposes of 
signature verification, see Bromley et al. 1993).

We are interested in this approach because as we wrote 
in our earlier experiments (Huffer & Graham 2018; Huffer, 
Wood & Graham 2019), the ‘authority’ of the algorithms of 



Graham et al: Towards a Method for Discerning Sources of Supply within the Human 
Remains Trade via Patterns of Visual Dissimilarity and Computer Vision

256

classification could too easily be used in unethical ways, 
especially in the context of buying and selling human 
remains or antiquities without known provenance. For 
our purposes, dissimilarity is a better approach, because 
instead of saying what something is, we are saying what it 
is not. And we are interested in a series of ‘is nots’.

For each image we study, we end up with a series of dis-
tance measures, alongside metadata describing whether 
or not the image has a secure provenance, and its ancestry 
estimation using the 3-group model (but see Dunn et al. 
2020 for criticism of that model). We also have included in 
our dataset images of Indigenous skulls published in the 
1940s from the United States that enable us to include 
a fourth category, ‘Indigenous North America’. These dis-
tance measures can then be used to test whether or not 
the purported ancestry of the skull can be predicted.

2.1 Method
1.  We use a convolutional neural network set up with 

a one-shot learning architecture using a triplet 
loss function. When pairs of images are dropped 
through the network one after the other, the differ-
ence between the two images perturbs the network, 
which we can measure. (NB: this is the same effect as 
having two identical networks and dropping a pair 
of images through once). This perturbation, or dis-
similarity score, is expressed as Euclidean distance 
between the two image vectors.

2.  Each pair, in the first iteration of the experiment, 
always contains one of six reference images (osteo-
logical study skulls), and one image from a corpus of 
photographs where 70 of the skulls depicted have 
grounded provenance, and 28 of the skulls depicted 
are from social media posts where we take the ven-
dor at their word regarding what they say about the 
‘ancestry’ of the skull. N = 98 study images.

3.  Each photo in the corpus thus ends up with six dis-
similarity scores, expressed as Euclidian distance 
from the reference images.

4.  We then perform a mixture discriminant analysis 
on the scores for the grounded images, to see if 
the predicted ‘ancestries’ match with the observed 
‘ancestries’. We do the same again with a machine 
learning model.

5.  Then, we take the scores for the grounded materi-
als as our ‘training’ corpus, and use that to predict 
the ‘ancestries’ of our ‘testing’ materials, the images 
of skulls from social media. This enables us to sug-
gest not only the ‘ancestries’ for these materials, but 
to explore the contrast with what the vendors say 
about the materials.

2.2 Data preparation for training the neural 
network model
Because neural networks are potentially sensitive to 
other elements of the photograph aside from the human 
remains themselves such as boxes in the background, 
the edges of windows, labels and so on, we removed the 
backgrounds from all images using the https://www.
remove.bg service from (Kaleido 2018–2020), which itself 
is built on a neural network trained to recognize fore-
ground versus background objects. The images used for 
training the neural network in the first place are not part 
of the N = 98 that we subsequently explored.

We augmented the training data set by adjusting the ori-
entation, cropping, flipping the axes, and so on of that ini-
tial image (see for instance Shorten & Khoshgoftaar 2019). 
We automatically rotated, translated, and adjusted light-
ing so that we could account for the variability in the qual-
ity of target image, such that we build into the network 
knowledge of how skulls look under different  conditions, 
both photographic and in terms of taphonomic condition 

Figure 2: A schematic representation of the one-shot learning architecture, where two networks are used at once and 
a pair of images are evaluated. In practice, a single network where the images are evaluated in turn achieves the 
same effect at a great savings in memory. The neural network is implemented in the Pytorch framework, and may be 
explored in the Jupyter notebook file in our repository, ‘Human_Remains_OSLNN_Triplet_Loss.ipynb’. Skull icons by 
user ‘freepik’ on flaticons.com, and user Jake Dunham, thenounproject.com.

https://www.remove.bg
https://www.remove.bg
http://flaticons.com
http://thenounproject.com
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that themselves are indicative of primary burial/deposi-
tion and/or secondary storage conditions or use (e.g. 
Pokines 2015a,b; Yucha et al. 2017). We end up with 33 
different views for each of the neural network training 
images, thus 363 images generated using standard data 
augmentation techniques (Tanner & Wong 1987; Van 
Dyke & Meng 2012). In this way, we can build a neural 
network representative of the very diverse category of ‘the 
human skull’.

The images for training the neural network were sourced 
by DH from his research within several ethnographic and 
osteological collections over the last three years, includ-
ing at: The Gustavianum Museum (Uppsala, Sweden), the 
Ethnographic Museum (Stockholm, Sweden), The Musée de 
L’Homme (Paris, France), the Sarawak Museum (Kuching, 
Malaysia), the Smithsonian National Museum of Natural 
History (Washington, DC, USA), the Tropenmuseum 
(Amsterdam, Netherlands), the Volkenkunde Museum 
(Leiden, Netherlands), The Pitt-Rivers Museum (Oxford, 
UK), the Oxford Museum of Natural History (Oxford, UK), 
the Duckworth Laboratory (Cambridge, UK).

When training the network, we use a ‘triplet loss’ func-
tion (Figure 3). We train the neural network on triplets 
where each triplet of images contains an anchor, a posi-
tive, and a negative. We select an ‘anchor’ image and then 
a ‘positive’ image, or the same object depicted from a 
different view; a ‘negative’ image is then selected from a 
different class as compared to the anchor, i.e. an image 
depicting a view of a different object. During training, we 
only select the ‘hardest’ triplets to train on which allows 
us to avoid spending valuable resources on evaluating 
‘easy’ and ‘semi-hard’ triplets; the results of evaluating easy 
and semi-hard triplets do not meaningfully change the 
network weights to be worth spending computation time.

We find our ‘hard’ triplets by sampling a batch of images 
and for each valid anchor image selecting the hardest avail-
able positive (largest distance from anchor to positive) and 
hardest available negative (smallest distance from anchor 
to negative). The hard triplets are then used to update the 
neural network’s weights. The advantage of this approach 
is that it teaches the network to detect subtle differences 
in the target domains (see Gómez 2019 for instance). More 
precisely put, we only select triplets where the negative is 
as visually similar as possible to the anchor while depict-
ing a different class and where the positive is as visually 
distinct from the anchor as possible while depicting the 
same class; generally, a modified view of the anchor.

2.3 Creating the study dataset for testing
We created an initial dataset of 98 potential images, 
where their orientation faced the camera as square as 
possible. Spradley 2016 notes the difficulty of creating 
reference data for metric studies. Hefner (2018) is a new 
database of morphometric data, but for our purposes we 
need photographs of skulls rather than measurements 
of landmarks. 70 of the collected images are grounded 
in osteological study and so we know their provenance. 
They were sourced largely from forensic literature and 
from a further selection of photographs taken by DH in 
the institutions mentioned above (see ‘raw-data/table-of-
sourced-images.csv’ in our data repository). The remain-
ing 28 images came from our collection of materials from 
Instagram where the picture was a clear frontal view of an 
intact skull and the vendor provided a clear story regard-
ing the provenience. While there are thousands of posts 
available, satisfying both of these requirements was more 
difficult and required visual examination of hundreds of 
images.

Figure 3: A schematic representation of triplet loss function on two images of skull A and one image of skull B (after 
Moindrot, 2018). While the ‘anchor’ and ‘positive’ images of skull A are different from each other, the resulting embed-
dings are closer to each other than they are to skull B’s embeddings. The resulting network and its weights are then 
used in the one-shot learning architecture. Skull icons by user ‘freepik’ on flaticons.com, and user Jake Dunham, 
thenounproject.com.

http://flaticons.com
http://thenounproject.com
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2.4 Creating the reference image dataset 
against which we measure dissimilarity
We reasoned that patterns of similar dissimilarities in 
comparison to what we are calling ‘references’ might 
find useful groupings in the data that could shed light 
on the origins of the skulls depicted. That these are 
images of high-quality duplicates did not matter we rea-
soned as they were all created the same way, thus the 
dissimilarities being calculated should all measure from 
the same starting points (but see ‘results and discussion  
below’).

The ‘reference’ pictures chosen are all high-quality resin 
copies of crania with associated osteological reports, 
square to the camera, posted on boneclones.com:

African American male BC-110
European male BC-107
Asian male BC-253
Asian female BC-211
African American female BC-178
European female BC-891

In our experiments we found that the aspects of the skull 
that the neural network responds to seem to be the same 
things that anthropologists pay attention to, such as 
orbital shape (Gore et al. 2011). For some skulls, it attended 
to the nasal margin and the media orbital margin; on oth-
ers it was the superior nasal margin, and sections of the 
left or right orbit. Sometimes for instance it was the inte-
rior nasal concha and right ethmoid and lacrimal bones. 
These aspects of maxilo-facial morphology such as orbital 
and nasal shape, zygomatic projection, alveolar projec-
tion, etc. are among those that forensic anthropologists 
pay attention to in order to determine ancestry estimates 
for unknown individuals. Markings on the skull, such as 
reference labels do attract attention, but in the context 
of the entire skull seems to make for a weaker signal that 
may or may not play a meaningful role.

3.1 Results and Discussion
Figure 4 depicts an initial visualization of the distance 
scores to each reference image. It shows that the distance 
scores are all highly positively correlated for the most part, 

Figure 4: Raw dissimilarity scores comparing the study images to our initial group of ‘reference’ images.

http://boneclones.com
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which means that the more distant an image is to one refer-
ence, the more it is to any other reference. Stated differently, 
images tend to be equally similar to all reference images. 
Moreover, the groups formed by secured origin are spread 
over most of the variance range and overlap with each other 
greatly. Further multivariate analysis using Principal Com-
ponents Analysis (PCA) summarises these trends (Figure 5).

3.2 Mixture Discriminant Analysis
While linear discriminant functions have been used in 
the past to assess ancestry from craniometric data with 
some success (Giles & Elliott 1962), but also substantial 
critique upon further testing (e.g. Sauer, Wankmiller & 
Hefner 2009), we did not find that it gave results in our 
case any better than chance. We explored a variety of tests 
and found that MDA (Mixture Discriminant Analysis) was 
most suitable for our purposes – assessing whether a case 
belongs to a given category for our grounded materials. 
Since the subpopulations from which these materials are 
derived have different average metric dimensions and dif-
fering frequencies of macromorphoscopic trait expression, 
MDA is a good choice because MDA assumes each class is 
a mixture of subgroups following a Gaussian distribution, 
instead of a single Gaussian distribution per class as in LDA.

We first fit an MDA model to our dissimilarity distance 
scores for the grounded materials, and try to predict the 
appropriate group (Figure 6).

The diagonal values in the confusion matrix (Table 1) 
indicates where the observed group and the predicted 
group matched; thus, our grounded data was correctly 
discriminated 83 per cent of the time. In the second part 
of our experiment, we divide our dataset into two groups, 
training and testing. The training group is the grounded 

Figure 5: Distribution of skull images according to reported origin (colors) along the two first principal components 
(97.5 per cent of variance) calculated through PCA using image-to-reference dissimilarity scores. The overlap of arrows 
indicates the overall strong correlation between dissimilarity scores. Note the variance range and the overlapping 
groups, and the mismatch between images with secured and non-confirmed origins.

Table 1: Confusion matrix showing the performance of 
the MDA model predicting the origin of the skulls in the 
training dataset, where only the distances from the orig-
inal six ‘reference’ images were considered. Here N = 64 
secure examples rather than 70 because the six refer-
ence images are not being tested against themselves.

predicted.train africa asia europe north_am

africa 9 0 2 0

asia 0 28 3 0

europe 0 2 3 0

north_am 0 2 2 13
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materials; the testing group are the materials derived 
from social media.

18 cases were mis-classified here (Table 2), meaning 
this model suggests over 2/3 of the ancestries claimed by 
vendors may be dubious.

3.3 Expanding the number of reference images 
and using non-metric multidimensional scaling
Given Figures 4 and 5 it would appear that our choice 
to use ‘reference images’ which were images of high-
quality resin copies was an error (our thinking had been 
they would function as a kind of neutral starting point 
from which to measure dissimilarities) – the neural net-
work picked up on the differences (1) between stand-
ardized professional photos and photos taken under 
varying conditions, and (2) between resin models that 
were not aged or eroded by taphonomic processes and 
real osteological materials, hence the strong positive  
correlations.

We therefore re-ran the visual dissimilarity analysis 
by performing pair-wise comparisons for every image 
in our dataset, all 98 images, thus obtaining a matrix of 
9,604 measurements (raw-data/square-materix-results.
csv). A visual assessment of the covariances between 

Figure 6: Comparison of the distribution of skulls (small numbers), subgroup centroids (large numbers) and groups 
(colors) on the two first canonical coordinates calculated through MDA using dissimilarities to the six reference 
images, distinguishing the training (left column) and full (right column) dataset, and the given (top row) and pre-
dicted (bottom row) origin.

Table 2: Confusion matrix showing the performance of 
the MDA model predicting the origin of the skulls in the 
unprovenanced dataset, where only the distances from 
the original six ‘reference’ images were considered.

predicted.test africa asia europe north_am

africa 1 2 1 0

asia 6 8 1 0

europe 0 3 1 0

north_am 1 0 4 0
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dissimilarities scores already shows promising results 
(Figure 7). Although correlations are generally lower, 
there is still indication of the influence of factors other 
than origin, as for example the sample batch.

In this iteration we created an MDA model using coordi-
nates derived through non-metric multidimensional scal-
ing (NMDS), which can process the dissimilarity matrix into 
an approximated projection of the points given a desired 
number of dimensions. We used the metaMDS function of 
the ‘vegan’ package in R, which performs NMDS trying to 
find a stable solution using random starts (Oksanen et al. 
2019). Conceptually, these are like the components in a 
PCA, so each new dimension is the axis that represents 
most of the remaining variance (or dissimilarities between 
skulls). An advantage of NMDS is that we can preselect the 
number of dimensions to be calculated; the more dimen-
sions, the less ‘stress’ the real distribution of points will 
suffer.

We explored how the number of NMDS dimensions 
affect the fitness of the MDA model with respect to the 
training and test data. We found that a two-dimensional 
NMDS projection is more than acceptable as a representa-
tion of the original dissimilarities. However, as expected, 
the MDA model predicts the training data better the more 
dimensions are included (Figure 8), with its best perfor-
mance using 35 dimensions (Figure 9). This number is 
explained by the fact that the 70 × 70 matrix containing 
dissimilarities within the training data is symmetrical, 
and so half the number of rows or columns will suffice to 
capture 100 per cent of the variance. This progression in 
performance is, however, not the case for predicting social 
media claims which remains in the interval 25–50 per 
cent match with the MDA model predictions, suggesting 
that the origin stated in social media is often wrong.

We selected the MDA model created with 35 NMDS 
dimensions as the consolidated option, given it correctly 

Figure 7: Covariances of the dissimilarity scores between the first 6 elements of the square matrix of 70 images.
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Figure 8: Showing how the number of NMDS dimensions affect the fitness of the MDA model with respect to the 
 training and the test data.

Figure 9: Distribution of skull images according to confirmed (training data) and non-confirmed (stated in social media) 
origin, along the two first dimensions of a 35-dimension NMDS projection. The stress plot (bottom-left) shows that 
the entire projection cover 100 per cent of the variance in the original data.
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discriminates 100 per cent of our grounded materials 
(Table 3). Additionally, this approach achieves a greater 
spread of points over MDA canonical space which is help-
ful for delimiting subgroups (Figure 10). However, we are 
aware that there is a trade-off between fitting the training 
data and predicting new data, and that the model predic-
tions on ungrounded materials must be put under a criti-
cal perspective.

With regard to the images of skulls from social media 
(Table 4), this model predicts 8 of 28 into the ‘correct’ 
group, while 20 are mis-classified.

The above analyses confirmed the importance of hav-
ing a large enough dataset of securely grounded materials, 
where ‘origin’ has been determined by forensic anthro-
pologists and osteologists, through direct observation or, 
even better, through morphological and genetic data. It 
would seem, however, that we can in fact use visual dis-
similarity as determined by a neural network as a proxy 
measurement for predicting origin of materials on social 
media from a single photograph.

Table 3: Confusion Matrix for the provenanced materials, 
using all distances to provenanced materials for training.

predicted.train africa asia europe north_am

africa 11 0 0 0

asia 0 34 0 0

europe 0 0 12 0

north_am 0 0 0 13

Table 4: Confusion Matrix for the unprovenanced materials, 
using all distances to provenanced materials for training.

predicted.test africa asia europe north_am

africa 1 5 2 0

asia 4 6 1 0

europe 1 1 1 0

north_am 2 1 3 0

Figure 10: Comparison of the distribution of skulls (small numbers), subgroup centroids (large numbers) and groups 
(colors) on the two first canonical coordinates calculated through MDA using 35 NMDS dimensions, distinguishing 
the training (left column) and full (right column) dataset, and the given (top row) and predicted (bottom row) origin.
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3.4 A deep learning model with TensorFlow
As a further experiment, we also considered the prob-
lem of predicting group membership with a deep learn-
ing approach, building a model with TensorFlow and the 
 Ludwig deep learning toolbox by Molino, Dudin, and 
 Miryala (2019). The idea here is to triangulate via a different 
method towards our same goal of prediction, and explor-
ing how the predictions from the two methods coincide 
with each other and/or with vendor attributions of origin.

‘Ludwig’ allows one to build a model by specifying 
the training, testing, and validation ‘hyperparameters’ 
in a metadata text file, rather than having to write code. 
Hyperparameters are settings extrinsic to the data (train-
ing rate, optimizer settings, pre-processing procedures). 
Our model specification file is included in our code reposi-
tory, as well as instructions for running Ludwig locally to 
train the model.

In this approach, the neural network attempts to 
learn a model from our square matrix of distances (every 
image compared to every other image), where it trains its 
model on our grounded materials. The grounded materi-
als were divided at random into an 80–20 per cent split 
into ‘training’ and ‘validation’ sets, and then the trained 
model was used to predict (test) the accuracy of the social 
media posts. We explored a variety of settings by perform-
ing a ‘grid search’ (multiple training runs while manually 
modifying one hyperparameter at a time). We found that 
a model trained using the Adam optimizer and a learning 
rate of 0.00375, while preprocessing our distance meas-
urements to turn them into z-scores, achieved the highest 
training accuracy of 80%.

3.5 Comparing vendors’ attributions of origin 
to the model predictions
In the Venn diagram below (Figure 11, from Table 5), 
we can see where the stated ancestry (by the vendor) 
and the predicted ancestry (according to the two mod-

els) agreed or where they differed. Thus, it seems that 
skulls with an Indigenous North American ancestry are 
circulating in this market far more than vendors either 
know or let on: indeed, vendors are often quite care-
ful to state that they would never knowingly trade in 
skulls from Indigenous groups. These results suggest 
in part that knowingly is the key word here; perhaps 
the correct synonym might be ‘openly’. More skulls are 
claimed to be Asian than what the model predicts, as 
the historic trade in bodies from India and China per-
haps provides ‘moral cover’. According to this model, 
none of the purportedly ‘europe’ skulls can be so  
classified.

Figure 11: Venn diagram showing the overlap of stated 
ancestry of each non-provenanced cranium vs. pre-
dicted category from MDA and Ludwig methods.

Table 5: Stated ancestry of each non-provenanced cra-
nium vs. predicted category from MDA and Ludwig 
methods.

labels Claimed 
origin

MDA model 
 predicted origin

Ludwig model 
predicted origin

np01 europe africa north_am

np02 asia africa asia

np03 europe asia asia

np04 europe north_am north_am

np05 asia asia asia

np06 asia africa asia

np07 asia europe asia

np08 europe north_am asia

np09 asia africa asia

np10 europe north_am north_am

np11 asia africa asia

np12 africa asia asia

np13 africa north_am asia

np14 africa asia asia

np15 africa asia asia

np16 africa asia asia

np17 africa north_am north_am

np18 africa africa africa

np19 africa europe asia

np20 asia north_am asia

np21 asia asia asia

np22 asia asia asia

np23 asia asia asia

np24 asia asia asia

np25 asia asia asia

np26 europe africa north_am

np27 europe europe north_am

np28 asia africa asia
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Of the unprovenanced images of human skulls:

•	 13 images have a purported ‘ancestry’ or origin that 
neither the MDA nor the Ludwig models predict.

•	 7 images have a purported ‘ancestry’ that both the 
MDA and the Ludwig model also predict.

•	 8 images have a purported ‘ancestry’ that both mod-
els predict, but is different from what the vendors 
claimed.

•	 There are 7 instances where the Ludwig model 
agreed with the claimed origin, but not with the 
MDA prediction.

•	 There is 1 instance where the MDA predicted origin 
agreed with the claimed origin, but not with the Lud-
wig origin.

Thus, the models lend support to the vendor’s story in 
15 cases overall, but only in 7 of those cases does it seem 
particularly strong, i.e. two different models predict the 
same origin (within all the usual caveats of this study). In 
another 18 cases, the models do not support the vendor, 
nor do they support each other, suggesting that those par-
ticular skulls might be worth further investigation, in that 
they have an origin not captured by our grounded exam-
ples. In 8 cases, the two models agree with each other, but 
not the vendor, which perhaps suggests cases where the 
vendor is either unknowledgeable or is misrepresenting 
the origin of the skulls. There are three cases where both 
models predict a North American origin, and a further 
four cases where one or the other model also points to 
a North American origin. This lends a certain amount of 
weight to the idea that North American Indigenous mate-
rials are a source of human remains not yet observed to 
be acknowledged on the social media platforms we track.

This has been an experiment; the mismatch between 
what the vendors say about the skulls and what the models 
predict lends weight to the idea that at least some collec-
tors misrepresent the origins and life histories contained 
within the remains of the once-living individuals they 
have now reduced to commodities (either through a lack 
of concern for such details or ignorance of how to discern 
such details from the bones themselves). And the image 
of the skull purportedly a war trophy from Vietnam? This 
was np02 in our dataset. The MDA model predicts an ‘afri-
can’ ancestry, while the Ludwig model suggests ‘asian’. The 
vendor’s story is thus suspect.

To extrapolate further we need to understand the 
impact different training datasets can have, and to figure 
out how accumulating maps of a landscape of dissimilari-
ties connects back to the ‘real world’. Formal photographs 
of carefully curated reference collections from the major 
research centers are needed to test this potential method 
further. MDA with non-metric multidimensional scaling 
of the dissimilarity measurements seems to be a most pro-
ductive avenue for further exploration. It is important to 
reiterate here that what we are exploring with our experi-
ment and what the results show are measures of dis-
similarity. The inferences we make on those grounds, of 
a similar ancestry (or not), are where one’s archaeological 
knowledge intersects with algorithmic agency.

No predictive model will be as accurate as physically 
measuring a skull, and even there, ancestry estimation 
without DNA is always going to be broad. That is why, in 
a perfect world (and especially for seized alleged archaeo-
logical or ethnographic specimens), isotopes and DNA 
can, and where possible, should play a significant role 
in an analysis (as for instance with Watkins et al. 2017). 
Although the results of this initial experiment are promis-
ing, they are not without issues, and we invite reuse and 
critique of our code so that the method can be improved. 
We can identify several future directions that are worth 
exploring and areas of methodological improvement 
worth implementing in future iterations. These include:

•	 Obtaining more photographs from a wider variety 
of angles. While our one-shot neural network for 
measuring image dissimilarity was trained on images 
where the skull was not always quite square to the 
camera, we sought out photos that were square to the 
camera for all of our grounded photographs, and the 
tested photographs from social media. This may have 
contributed to the positive correlations seen in the 
initial PCA.

•	 Better, and more, reference images, preferably from 
forensic cases in which remains with secure ancestry 
estimations derived from in-person analysis and/or 
DNA are at hand.

•	 Exploration and capture of the variability between 
ancestral populations and subpopulations at a level 
more equivalent to that discernable by forensic an-
thropologists when analyzing unprovenienced re-
mains in person.

•	 Using a explore-exploit strategy to neural network 
training (see Martin et al. 2018) to investigate wheth-
er or not this can improve accuracy and lower the 
number of required training epochs needed.

4. Conclusion
Photographs of human remains appear briefly on social 
media, and disappear again once the remains are sold. A 
single photograph might be the only evidence of a life 
lived. One-shot learning holds potential for us to be able to 
map a landscape of sourcing or broad-strokes geographic 
‘ancestry’. The resulting picture might be incorrect in terms 
of fine details, but taken at a more macroscopic level as a 
relative positioning vis-a-vis other remains, might be our 
best bet at understanding the broad patterns. Other simi-
lar approaches to this problem that rely on 3D scanning 
technology and photogrammetry are novel enough to 
require additional testing to refine, and also rely on physi-
cal access to the crania in question and obtaining tens to 
hundreds of photos from all angles of a single skull (e.g. 
Berezowski, Rogers & Liscio 2020).

Without ground-truthing, i.e. physically examining 
the skulls in question and ideally also performing sta-
ble and radiogenic isotope analysis and taking DNA (e.g. 
Watkins et al. 2017), we cannot source these skulls to a 
specific cultural group or localized region in the world 
with the certainty required to serve as evidence in a pros-
ecution. But by situating what we do have, these one-off 
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photographs, through a neural network, we can begin 
to make a web of associations that allow us to discern 
more about this trade. That is, we could begin to assess 
the likelihood of accuracy in the professed ‘professional’ 
knowledge of certain collectors, or the degree to which 
terms like ‘Dayak’ and ‘Asmat’ and ‘kapala’ are used for 
marketing (rather than actual true descriptors of the 
remains in question).

With a refined model and method, what might we see 
if we could begin to quantify the numbers of individual 
humans bought and sold in this trade, and where they are 
coming from? Would we see patterns similar to what are 
observed in the larger antiquities trades, of source and 
destination countries, as multi-year systematic research 
has revealed (Mackenzie et al. 2020)? Or would it be simi-
lar to the patterns of opportunistic looting documented 
for Facebook (Al-Azm & Paul 2019)? Achieving these goals 
to the level of consistency and reliability needed to be 
useful to investigations is a long way off, but we suggest 
here that the outcome of this experiment warrants further 
development of this research direction.

Additional File
The additional file for this article can be found as follows:

•	 59-1047-2-SP.zip. Supporting code and data, mirror-
ing release at github.com/bonetrade/visual-dissimilarity. 
DOI: https://doi.org/10.5334/ jcaa.59.s1
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